Where we are?

<table>
<thead>
<tr>
<th>#</th>
<th>Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5th March</td>
<td>Web Engineering Introduction and Overview</td>
</tr>
<tr>
<td>2</td>
<td>12th March</td>
<td>Requirements Engineering for Web Applications</td>
</tr>
<tr>
<td>3</td>
<td>19th March</td>
<td>Web Application Modelling</td>
</tr>
<tr>
<td>4</td>
<td>9th April</td>
<td>Web Application Architectures</td>
</tr>
<tr>
<td>5</td>
<td>16th April</td>
<td>Developing Applications with WebML</td>
</tr>
<tr>
<td>6</td>
<td>23rd April</td>
<td>Testing and Usability of Web Applications</td>
</tr>
<tr>
<td>7</td>
<td>30th April</td>
<td>Maintenance and Performance of Web Applications</td>
</tr>
<tr>
<td>8</td>
<td>7th May</td>
<td>Web Technologies I</td>
</tr>
<tr>
<td>9</td>
<td>14th May</td>
<td>Web Technologies II</td>
</tr>
<tr>
<td>10</td>
<td>21st May</td>
<td>Web Application Development Process</td>
</tr>
<tr>
<td>11</td>
<td>28th May</td>
<td>Project Management for Web Applications</td>
</tr>
<tr>
<td>12</td>
<td>4th June</td>
<td>Web Application Security</td>
</tr>
<tr>
<td>13</td>
<td>11th June</td>
<td>Mobile Application Development I</td>
</tr>
<tr>
<td>14</td>
<td>18th June</td>
<td>Mobile Application Development II</td>
</tr>
<tr>
<td>15</td>
<td>25th June</td>
<td>Final Exam</td>
</tr>
</tbody>
</table>
Overview

- Introduction
- Fundamentals of Testing on the Web
- Methods and techniques to Test Web Applications
- Automatic Web application Testing
- Fundamentals of Usability on the Web
- Summary

INTRODUCTION
Testing and Usability

• Testing
 – Checking the conformance of the application versus its design requirements
 – Oriented to functional aspects

• Usability
 – Designing and verifying the conformance of the application versus its user ability and capability of interaction
 – Oriented to non-functional aspects

• Testing and Usability are orthogonal aspects
 – In some cases they slightly overlap!

The Importance of Testing

• Traditionally, testing has focused on functional requirements – not enough for Web applications.

• On the Web, testing is a critical measure of quality assurance.
 – Meeting users’ expectations
 – Finding errors and shortcomings
 – Many users, many platforms
 – Behavior of third-party software
The Importance of Usability

- “Mission critical” Web applications
- Poor design leads to lost time, productivity
- Your website speaks for your organization
 - Customers have choices
 - Easy come, easy go
- Diverse contexts
 - Proliferation of web-enabled devices
 - Increasing adoption by special needs groups – ex. seniors

What are the peculiarity of testing Web applications?

FUNDAMENTALS OF TESTING ON THE WEB
Terminology

- Some definitions
 - **Testing**: An activity conducted to evaluate the quality of a product to improve it by identifying defects and problems.
 - **Error**: the actual result deviates from the expected.
 - Our expected results should (theoretically) come from our requirements definition.
 - Most often, the goals/concerns/expectations of stakeholders serve as the testing basis.
 - **Test case**: a set of inputs, execution conditions, and expected results for testing an object.

Testing Objectives

- Main objective: find errors, NOT show that none exist.
- Complete test coverage is impossible, so testing focuses on mitigating the largest risks.
 - Where’s the greatest potential for loss?
 - What are the sources of this risk?
- Start testing as early as possible – even with restricted resources and time.
Testing Levels

- Unit tests:
 - Testing the “atomic” units - classes, Web pages, etc. - independently. (Developer)

- Integration tests:
 - Test the interaction of units (Tester & Developer)

- System tests:
 - Testing the whole, integrated system (Dedicated team)

- Acceptance tests:
 - “Real-world” tests - testing under conditions that are as close to the “live” environment as possible (Client)

- Beta tests:
 - Informal, product-wide tests conducted by “friendly” users.

The Tester Role

- The ideal tester has a “destructive” attitude.

- Very difficult for developers to “destroy” their own work.

- However, Web projects focus heavily on unit tests, making them more prone to errors.

- Thus, some guidelines:
 - Have others in the Web team perform tests.
 - Best tester is the one who gets the most bugs fixed.
Web Engineering Specifics 1

- Errors in Web content
 - Found mainly through proofreading - very costly
 - Alternative tests: Spell-checking, meta-information

- Hypertext structure
 - Is each page accessible via a link?
 - Does each page link to the hypertext structure?
 - Are there any broken links?
 - What happens when the user hits “Back” in their browser?

Web Engineering Specifics 2

- Subjective requirements for presentation
 - Often in the eye of the beholder (e.g., aesthetics).
 - Tester must distinguish accepted behavior from faulty.
 - Presentation testing on the Web borrows from print publishing.

- Multi-platform delivery
 - Can you test on every device?
 - Can you create test cases on every device?
 - Simulators are frequently available, but may be buggy.
Web Engineering Specifics 3

• Global availability
 – Testing dynamic content in multiple languages
 – Testing for layout difficulties due to varying text lengths.

• Juvenility & Multidisciplinarity of Web team
 – Reluctance to accept testing methods.
 – Lack of testing knowledge.
 – Consensus-building is required.
 – May do too much testing; just as bad as too little.

Web Engineering Specifics 4

• Multiple System Components
 – Third-party; different platforms.
 – Testing of the components’ integration and configuration is also required.

• Immaturity of test methods
 – Suitable test suites for new technologies often don’t exist, or are poorly designed.

• Continuous change
 – Requirements, hardware, software changes.
 – Retest following each major upgrade.
How can I test my Web application?

METHODS AND TECHNIQUES TO TEST WEB APPLICATIONS

Link Testing

• Finding broken links
 – Can be automated through a spider
 – Doesn’t help for pages with no incoming links.

• Finding orphan pages
 – Orphans are pages with no links back to the navigation structure.
 – Users get frustrated and leave.

• Capturing statistics
 – Depth & breadth of navigation.
 – Distance between two related pages.
 – # of links.
 – Load times.
Browser Testing

- Browsers vary by:
 - Manufacturer
 - Version
 - Operating system
 - Device
 - Configuration (stylesheets, JavaScript on/off)
 - W3C Standard compliance

- Important questions to ask:
 - How is state managed?
 - Can a (dynamic) web page be bookmarked?
 - Can users open multiple windows?
 - What happens when cookies and/or scripting is turned off?

Load Testing

- Does the system meet required response times and throughput?

- Load profile - expected access types, visits per day, transaction types, transactions per session, etc.

- Must determine the range of values for response times and throughput.

- Evaluate the results to look for bottlenecks.
Stress Testing

• How does the system behave under abnormal/extreme conditions?

• The test should tell you…
 – If the system meets the target responses times and throughputs
 – If the system responds with an appropriate error message. (i.e. graceful degradation)
 – If the system crashes (it should NOT!)
 – How quickly the system recovers to normal operation.

Continuous Testing

• Simulates usage over a long period of time

• Testing for errors that “pop up” because resources aren’t released by an operation.
 – Unreleased database connections
 – Other memory leaks

• Typically, running the operation a few times doesn’t produce an error, hence the need for continuous testing.
Security Testing

- A systematic test scheme is strongly encouraged.
- Testing for correctness is not sufficient
 - Is confidential data inadvertently exposed?
 - What happens if we input incomplete data?
 - What happens if we inject malicious code?
 - SSL-encrypted pages
 - Is our SSL certificate working?
 - What happens if I try to access a protected page/site in a non-secure way (i.e., http://)?

![XKCD Comic](http://imgs.xkcd.com/comics/exploits_of_a_mom.png)

Test-Driven Development

- Inspired by the test-first approach used in XP (eXtreme Programming); can be used in any type of project.
- Tests must be written before implementation.
 - Every unit has a test.
 - When a test fails, the developer must only change the code to successfully run the test.
- Developers can concentrate on small steps, while still making clean code that works.
- More pressure leads to more testing.
How can we reduce the cost of Web application testing?

AUTOMATIC WEB APPLICATION TESTING

JUnit Overview

- Open source Java testing framework used to write and run repeatable automated tests
- A structure for writing test drivers
- JUnit features include:
 - Assertions for testing expected results
 - Test features for sharing common test data
 - Test suites for easily organizing and running tests
 - Graphical and textual test runners
- JUnit is widely used in industry
- JUnit can be used as stand alone Java programs (from the command line) or within an IDE such as Eclipse
Cactus Overview

- Built on JUnit framework
- Intended to test JSP, Servlets, EJBs, Filters, and custom tags
- Complex architecture that has client JVM call the J2EE application server JVM
- Testcase classes must reside on client and server

Other JUnit Extensions

- HttpUnit
 - Parses HTML results into DOM
 - Easy link navigation and form population
 - Useful for automated acceptance tests
- Canoo WebTest
 - HttpUnit inside Ant
- JUnitPerf
 - Wrap any JUnit tests
 - Measure desired performance and scalability tolerances
Automating Testing - Advantages

• Some tests are impossible to perform manually.
 – Load & stress tests.
 – Link testing for large websites.

• More tests can be run in less time.

• When updating an application, can detect errors caused by side-effects to unchanged functionality.

Automating Testing - Disadvantages

• Expectations of automated testing is often too high.
 – Automation does NOT improve effectiveness.
 – If tests are poorly devised, automating them does not magically improve them.

• Automation is expensive
 – Test execution infrastructure must be maintained.
 – License fees & training costs
How to design usable Web applications?

FUNDAMENTALS OF USABILITY ON THE WEB

Usability Defined

• ISO/IEC standard definition (1998):
 – “The extent to which a product can be used by specified users within a specified usage context to achieve specified goals effectively, efficiently, and satisfactorily.”

• Usability engineering is an ongoing, but critical process
 – Define user and task models
 – Iteratively test and reevaluate
 – User-based vs. expert methods
Defining Usability in Web Applications

• Traditional software usability specifics do not necessarily carry over to the Web:
 – People use your application immediately.
 – No manual or trainers.
 – No salespeople.

• How to categorize users?
 – First-time or returning?
 – Expert or novice?
 – Broadband or dial-up?
 – Desktop or mobile?

Top Problems

• Contact information – address or phone number is buried
• Search function is not visible or unclear as to functionality
• No easy way to get back to critical points
• Pages that should load fast don’t (e.g. main page or key link page)
• “What’s new” is old
• Back button requires a repost of data
Usability Engineering

• Consists of 4 phases that are essentially parallel to the Web Engineering process

User-Centered vs. Usage-Centered

<table>
<thead>
<tr>
<th>Phase</th>
<th>Focal Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>User-Centered (Traditional)</td>
</tr>
<tr>
<td>Requirements</td>
<td>Meetings, interviews, focus groups</td>
</tr>
<tr>
<td>Design & Implementation</td>
<td>User requirements</td>
</tr>
<tr>
<td></td>
<td>Direct user participation</td>
</tr>
<tr>
<td>Operation</td>
<td>Training, evaluation of help-desk logs</td>
</tr>
</tbody>
</table>
Requirements Analysis

• Systems Analysts & Usability Experts take the lead:
 – Competitive Analysis
 – Define qualitative/quantitative goals
 • Information, Entertainment, Exchange (Siegel)
 • Make them concrete and testable!
 – User-centered: build user profiles
 – Usage-centered
 • Task analysis
 • Ease-of-use or Ease-of-learning?

Interaction and Design

• Initially, the Interface Designer builds a conceptual model
 – Presentation: Storyboards & Paper mock-ups
 – Navigation: Card-sorting
 – Based on core use cases
 – Shows the basic structure

• Getting feedback from potential users

• Usability expert provides input after this first round.
Interaction and Design

• Designer and coders can then elaborate on the details

• Additional user testing:
 – Prototypes – exhibit some functionality
 – Usability Tests – real context, real tasks.

• Remote usability testing
 – Sample of representative users
 – Client-Logging software
 – Web-cams if possible
 – Better external validity & lower costs(?)

Coding and Post-Deployment

• Usability Expert assumes the role of the Quality Assurance manager.
 – Consistency?
 – Observed guidelines & standards?
 – Adhered to (current) requirements?

• Bring same users back in for testing, if possible.

• Document, document, document!
General Design Guidelines

- Design guidelines represent best practices
- OK for “general” users
 - Normal cognitive ability
 - Normal audiovisual abilities
- Some guidelines may be inappropriate for audience members with special needs.
 - Ex. Navigation elements for schizophrenics
- More rigorous usability engineering techniques (just discussed) should be employed

Human Information Processing

- Human cognition plays a critical role in user interface design.
 - Perception
 - Positioning, grouping, arranging
 - Perceiving shapes and relationships
 - Memory
 - Limitations of working memory
 - Chunking, 7 + 2 (Miller)
 - Attention
 - Focusing on one aspect
 - Movement, color schemes
Guidelines – Response Times

- As response times increase, user satisfaction decreases
 - Anything greater than 3 seconds, and the user becomes aware she’s waiting
 - After 10 seconds, user gives up
- Optimize, or minimize graphics
- Consider breaking up large pages.
- `` - use “width” & “height” attributes
- Don’t forget your dial-up audience!
 - Home page size should be < 50Kb
 - Provide warnings (MPG – 2.5Mbs)

Guidelines – Efficiency

- Minimize distance between clickable elements (while keeping effective sizing)
- Avoid frequent changes between mouse and keyboard
- Tab-friendly for text-based browsers
- Minimize clicks to accomplish tasks (rule of thumb: no more than 4 clicks)
Guidelines – Colors

- Colors have different meaning depending on your audience
 - Cultural differences
 - Domain-specific meanings
 - Warm vs. cool colors

- Make sure all information conveyed by colors is also available without color.

- Minimize the number of colors

- Avoid extreme hues, highly saturated colors

- How does your site look on an LCD? CRT?

Guidelines – Text Layout

- Screen vs. Paper

- Consider different window sizes
 - Avoid fixed width layouts
 - Avoid multiple columns (typically)

- Readability
 - Sans-serif for screen, serif for print
 - Avoid patterns, low-contrast background
 - Short paragraphs

- Allow for user-selected font-sizes
Guidelines – Page Structure

- Display considerations
- Use relative positioning over absolute.
- Vertical scrolling is fine; horizontal scrolling is NOT.
- Important elements should ALWAYS be visible.
- Make page print-friendly or provide alternative style & print button.

Guidelines – Navigation

- Provide your user with a model of the site
 - Intuitive navigation elements
 - Site map
 - Breadcrumbs
- Dropdown menus
 - Pros: Efficient use of space
 - Cons: Key information is hidden
Guidelines – Multicultural

• Location is typically not a constraint on the Web.

• “Smallest common cultural denominator”:
 – Avoid over-expressive colors
 – Symbols
 – Language
 – Information representation (date/time formats)

• Present form elements consistently

Guidelines – Consistency

• Consistency keeps learning to a minimum; users don’t want to have to think!

• Identity can be set by consistent components
 – Header: home, logo, navigation, search, help
 – Footer: author, modification, contact

• Consistent design helps users avoid getting lost, especially when jumping to different sub-units of an organization.
More on Web Accessibility

- People with disabilities are adopting the Web in greater numbers.
- Tim Berners-Lee stressed universal access to the Web as essential.
- 20% of the world’s population have disabilities in at least one of the senses.
- Key takeaways:
 - Designing for special needs doesn’t necessarily require reinventing your application.
 - Doing so can also help “general” users

Web Accessibility Initiative (WAI)

- Web Content Accessibility Guidelines 2.0 (WCAG, 2008) published by the W3C's WAI
- 12 Guidelines
- 4 Groups
 1) Perceivable
 2) Operable
 3) Understandable
 4) Robust
- Defines Special Needs Groups
- Conformance Levels (A, AA, AAA)
That's almost all for day...

WRAP-UP

Things to keep in mind
(or summary)

- Testing and Usability are orthogonal issues
 - Testing covers functional requirements validation
 - Usability tends to cover “non-functional” requirements validation (this is not totally exact)

- Both are part of a good (Web) application design process

- They can be partially automated

- Key differences
 - Testing deals mainly with in house and (rarely) external developers and end users
 - Usability relies on expertise outside “technological world”
Bibliography

• Mandatory reading

• Other References
 – Kent Beck, eXtreme Programming Explained
 – http://www.usability.gov/

Testing Tools

• JUnit.org
 – http://www.junit.org
• Cactus
 – http://jakarta.apache.org/cactus
• Clover
 – http://www.thecortex.net/clover
• dbUnit
 – http://www.dbunit.org
• HttpUnit
 – http://www.httpunit.org
• Canoo WebTest
 – http://webtest.canoo.com
Usability Tools

- Development
 - Firefox Developer Toolbar (http://chrispederick.com/work/web-developer/)

- Testing
 - http://webusability.com/usability_tools.htm
 - http://wave.webaim.org/

- Comprehensive list of WAI tools
 - http://www.w3.org/WAI/ER/tools/complete

Next Lecture

<table>
<thead>
<tr>
<th>#</th>
<th>Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5th March</td>
<td>Web Engineering Introduction and Overview</td>
</tr>
<tr>
<td>2</td>
<td>12th March</td>
<td>Requirements Engineering for Web Applications</td>
</tr>
<tr>
<td>3</td>
<td>19th March</td>
<td>Web Application Modelling</td>
</tr>
<tr>
<td>4</td>
<td>9th April</td>
<td>Web Application Architectures</td>
</tr>
<tr>
<td>5</td>
<td>16th April</td>
<td>Developing Applications with WebML</td>
</tr>
<tr>
<td>6</td>
<td>23rd April</td>
<td>Testing and Usability of Web Applications</td>
</tr>
<tr>
<td>7</td>
<td>30th April</td>
<td>Maintenance and Performance of Web Applications</td>
</tr>
<tr>
<td>8</td>
<td>7th May</td>
<td>Web Technologies I</td>
</tr>
<tr>
<td>9</td>
<td>14th May</td>
<td>Web Technologies II</td>
</tr>
<tr>
<td>10</td>
<td>21st May</td>
<td>Web Application Development Process</td>
</tr>
<tr>
<td>11</td>
<td>28th May</td>
<td>Project Management for Web Applications</td>
</tr>
<tr>
<td>12</td>
<td>4th June</td>
<td>Web Application Security</td>
</tr>
<tr>
<td>13</td>
<td>11th June</td>
<td>Mobile Application Development I</td>
</tr>
<tr>
<td>14</td>
<td>18th June</td>
<td>Mobile Application Development II</td>
</tr>
<tr>
<td>14</td>
<td>25th June</td>
<td>Final Exam</td>
</tr>
</tbody>
</table>