
!"© #$%&'()*+",--."""/(0+0'"102304"526"75+*5'(25"8($'%503"

Intelligent Systems

Agents

,"

Where are we?

Title
1 Introduction

2 Propositional Logic

3 Predicate Logic

4 Theorem Proving, Description Logics and Logic Programming

5 Search Methods

6 CommonKADS

7 Problem Solving Methods

8 Planning

9 Agents

10 Rule Learning

11 Inductive Logic Programming

12 Formal Concept Analysis

13 Neural Networks

14 Semantic Web and Exam Preparation

9"

Agenda

1.  Motivation

2.  Technical solution, illustrations and extensions
1.  Definitions and introduction

2.  Principles
3.  Agents as intentional systems

4.  Abstract architecture

5.  Large example: Tileworld
6.  Multi-agent systems

3.  Summary
4.  References

:"

MOTIVATION

;"

Motivation

Sensors

Environment

Acuators

Agent
?

Actions

Percepts

¥  The agent perceives the environment via
sensors and influences it through actuators.

¥  Agents can carry out tasks autonomously and
react to changes in its environment.

<"

Motivating example

¥  Taxi driver

¥  Perception: Camera, speedometer, GPS
¥  Actions: steer, change gear, break, talk to guest
¥  Goals: Safe, fast, legal, comfortable ride,

maximize profit
¥  Environment: streets, other actors, guests

="

TECHNICAL SOLUTION AND
ILLUSTRATIONS

>"

Definitions

¥  There are many different definitions from various areas, such
as software engineering, classical logics, logic programming,
robotic:
Ð  Genesereth/Ketchpel: A program is a software agent if it

communicates correctly in an agent language, such as
ACL or KQML.

Ð  BDI agents are described by their believes, desires, and
intentions. This complies with three modalities of a
complex modal logic, which can be found in the data
structures of the system.

."

Definitions

¥  Kowalski follows a traditional approach of logic based agents and uses
logic programming for the implementation of agents.

¥  ShohamÔs definition is more focused: A hard- or software is an agent if
one analyses it with the help of mental terms.

¥  Wooldridge/Jennings consider hard- or software an agent if it is:
Ð  autonomous (independently follows its goals)

Ð  social (is cooperating with a human or other agents)
Ð  pro-active (takes initiative) und

Ð  reactive (perceives its environment and reacts to changes).

¥  An agent is a computer system capable of autonomous action in some
environment in order to meet its design objectives.

SYSTEM

ENVIRONMENT

input output

!-"

Agents

¥  Agent
Ð Autonomous entities that perceive their

environment and act upon it

Ð One form is a software agent

Ð Autonomy is the ability to control their own
behavior and act without human intervention

!!"

Intelligent Agents

¥  Intelligent Agents

Ð Agents pursue goals in a such a way as to
optimize some given performance measure

Ð They operate flexibly and rationally in a variety of
circumstances

Ð Does NOT include omniscience, omnipotence, or
perfection

!,"

Interaction

¥  Interaction

Ð Agents may be affected by other agents
(including humans) in pursuing their goals

Ð May take place directly via a communication
language

Ð May take place indirectly via the environment
¥  Agents sense the actions of other agents and react accordingly

!9"

Reactivity

¥  If a programÕs environment is guaranteed to be fixed, the
program need never worry about its own success or
failure Ð program just executes blindly
Ð  Example of fixed environment: compiler

¥  The real world is not like that: things change, information
is incomplete. Many (most?) interesting environments are
dynamic

¥  Software is hard to build for dynamic domains: program
must take into account possibility of failure Ð ask itself
whether it is worth executing!

¥  A reactive system is one that maintains an ongoing
interaction with its environment, and responds to changes
that occur in it (in time for the response to be useful)

!:"

Proactiveness

¥  Reacting to an environment is easy (e.g.,
stimulus → response rules)

¥  But we generally want agents to do things for
us

¥  Hence goal directed behavior
¥  Pro-activeness = generating and attempting

to achieve goals; not driven solely by events;
taking the initiative

¥  Recognizing opportunities

!;"

Balancing Reactive and Goal-Oriented
Behavior

¥  We want our agents to be reactive, responding
to changing conditions in an appropriate (timely)
fashion

¥  We want our agents to systematically work
towards long-term goals

¥  These two considerations can be at odds with
one another

¥  Designing an agent that can balance the two
remains an open research problem

!<"

Social Ability

¥  The real world is a multi-agent environment: we
cannot go around attempting to achieve goals
without taking others into account

¥  Some goals can only be achieved with the
cooperation of others

¥  Similarly for many computer environments:
witness the Internet

¥  Social ability in agents is the ability to interact
with other agents (and possibly humans) via
some kind of agent-communication language,
and perhaps cooperate with others

!="

Other Properties

¥  Other properties, sometimes discussed in the context of
agency:

¥  mobility: the ability of an agent to move around an electronic
network

¥  veracity: an agent will not knowingly communicate false
information

¥  benevolence: agents do not have conflicting goals, and that
every agent will therefore always try to do what is asked of it

¥  rationality: agent will act in order to achieve its goals, and will
not act in such a way as to prevent its goals being achieved
Ñ at least insofar as its beliefs permit

¥  learning/adaption: agents improve performance over time

!>"

Agents and Objects

¥  Are agents just objects by another
name?

¥  Object:
Ð  encapsulates some state
Ð  communicates via message passing

Ð  has methods, corresponding to operations that
may be performed on this state

!."

Agents and Objects

¥  Main differences:
Ð  agents are autonomous:

agents embody stronger notion of autonomy than
objects, and in particular, they decide for themselves
whether or not to perform an action on request from
another agent

Ð  agents are smart:
capable of flexible (reactive, pro-active, social) behavior,
and the standard object model has nothing to say about
such types of behavior

Ð  agents are active:
a multi-agent system is inherently multi-threaded, in that
each agent is assumed to have at least one thread of
active control

,-"

Agents and Expert Systems

¥  ArenÕt agents just expert systems by another
name?

¥  Expert systems typically disembodied ÔexpertiseÕ
about some (abstract) domain of discourse (e.g.,
blood diseases)

¥  Example: MYCIN knows about blood diseases in
humans
Ð  It has a wealth of knowledge about blood diseases, in the

form of rules
Ð  A doctor can obtain expert advice about blood diseases

by giving MYCIN facts, answering questions, and posing
queries

,!"

Agents and Expert Systems

¥  Main differences:
Ð  agents situated in an environment:

MYCIN is not aware of the world Ñ only information obtained
is by asking the user questions

Ð  agents act:
MYCIN does not operate on patients

¥  Some real-time (typically process control)
expert systems are agents

,,"

Intelligent Agents and AI

¥  When building an agent, we simply want a
system that can choose the right action to
perform, typically in a limited domain

¥  We do not have to solve all the problems of AI to
build a useful agent:

a little intelligence goes a long way!
¥  Oren Etzioni, speaking about the commercial

experience of NETBOT, Inc:
ÒWe made our agents dumber and dumber and
dumberÉuntil finally they made money.Ó

,9"

Environments – Accessible vs. inaccessible

¥  An accessible environment is one in which the
agent can obtain complete, accurate, up-to-
date information about the environmentÕs state

¥  Most moderately complex environments
(including, for example, the everyday physical
world and the Internet) are inaccessible

¥  The more accessible an environment is, the
simpler it is to build agents to operate in it

,:"

Environments –
Deterministic vs. non-deterministic

¥  A deterministic environment is one in which any
action has a single guaranteed effect Ñ there is
no uncertainty about the state that will result
from performing an action

¥  The physical world can to all intents and
purposes be regarded as non-deterministic

¥  Non-deterministic environments present greater
problems for the agent designer

,;"

Environments - Episodic vs. non-episodic

¥  In an episodic environment, the performance of
an agent is dependent on a number of discrete
episodes, with no link between the performance
of an agent in different scenarios

¥  Episodic environments are simpler from the
agent developerÕs perspective because the agent
can decide what action to perform based only on
the current episode Ñ it need not reason about
the interactions between this and future episodes

,<"

Environments - Static vs. dynamic

¥  A static environment is one that can be assumed
to remain unchanged except by the performance
of actions by the agent

¥  A dynamic environment is one that has other
processes operating on it, and which hence
changes in ways beyond the agentÕs control

¥  Other processes can interfere with the agentÕs
actions (as in concurrent systems theory)

¥  The physical world is a highly dynamic
environment

,="

Environments – Discrete vs. continuous

¥  An environment is discrete if there are a fixed,
finite number of actions and percepts in it

¥  Russell and Norvig give a chess game as an
example of a discrete environment, and taxi
driving as an example of a continuous one

¥  Continuous environments have a certain level of
mismatch with computer systems

¥  Discrete environments could in principle be
handled by a kind of Òlookup tableÓ

,>"

Agents as Intentional Systems

¥  When explaining human activity, it is often useful to
make statements such as the following:

 Janine took her umbrella because she
 believed it was going to rain.
 Michael worked hard because he wanted
 to possess a PhD.

¥  These statements make use of a folk psychology, by
which human behavior is predicted and explained
through the attribution of attitudes, such as believing
and wanting (as in the above examples), hoping,
fearing, and so on

¥  The attitudes employed in such folk psychological
descriptions are called the intentional notions

,."

Agents as Intentional Systems

¥  The philosopher Daniel Dennett coined the term
intentional system to describe entities Ôwhose
behavior can be predicted by the method of
attributing belief, desires and rational acumenÕ

¥  Dennett identifies different ÔgradesÕ of intentional
system:
ÔA first-order intentional system has beliefs and
desires (etc.) but no beliefs and desires about
beliefs and desires. ÉA second-order intentional
system is more sophisticated; it has beliefs and
desires (and no doubt other intentional states) about
beliefs and desires (and other intentional states) Ñ
both those of others and its ownÕ

9-"

Agents as Intentional Systems

¥  The intentional notions are thus abstraction tools, which
provide us with a convenient and familiar way of describing,
explaining, and predicting the behavior of complex systems

¥  Remember: most important developments in computing are
based on new abstractions:

Ð  procedural abstraction
Ð  abstract data types

Ð  objects
 Agents, and agents as intentional systems, represent a
further, and increasingly powerful abstraction

¥  So agent theorists start from the (strong) view of agents as
intentional systems: one whose simplest consistent
description requires the intentional stance

9!"

Agents as Intentional Systems

¥  This intentional stance is an abstraction tool Ñ a
convenient way of talking about complex systems, which
allows us to predict and explain their behavior without
having to understand how the mechanism actually works

¥  Now, much of computer science is concerned with
looking for abstraction mechanisms (witness procedural
abstraction, ADTs, objects,É)

 So why not use the intentional stance as an
 abstraction tool in computing — to explain,
 understand, and, crucially, program computer
 systems?

¥  This is an important argument in favor of agents

9,"

Agents as Intentional Systems

¥  Other 3 points in favor of this idea:
¥  Characterizing Agents:

Ð  It provides us with a familiar, non-technical way of
understanding & explaining agents

¥  Nested Representations:
Ð  It gives us the potential to specify systems that

include representations of other systems
Ð  It is widely accepted that such nested

representations are essential for agents that must
cooperate with other agents

99"

An aside…

¥  We find that researchers from a more mainstream
computing discipline have adopted a similar set of ideasÉ

¥  In distributed systems theory, logics of knowledge are used
in the development of knowledge based protocols

¥  The rationale is that when constructing protocols, one often
encounters reasoning such as the following:

 IF process i knows process j has
 received message m1
 THEN process i should send process j
 the message m2

¥  In DS theory, knowledge is grounded Ñ given a precise
interpretation in terms of the states of a process; weÕll
examine this point in detail later

9:"

Abstract Architecture for Agents

¥  Assume the environment may be in any of a finite
set E of discrete, instantaneous states:

¥  Agents are assumed to have a repertoire of
possible actions available to them, which transform
the state of the environment:

¥  A run, r, of an agent in an environment is a
sequence of interleaved environment states and
actions:

9;"

Abstract Architecture for Agents

¥  Let:
Ð R be the set of all such possible finite

sequences (over E and Ac)
Ð RAc be the subset of these that end with an

action

Ð RE be the subset of these that end with an
environment state

9<"

State Transformer Functions

¥  A state transformer function represents behavior
of the environment:

¥  Note that environments areÉ
Ð  history dependent
Ð  non-deterministic

¥  If τ(r)=∅, then there are no possible successor
states to r. In this case, we say that the system
has ended its run

¥  Formally, we say an environment Env is a triple
Env =〈E,e0,τ〉 where: E is a set of environment
states, e0∈ E is the initial state, and τ is a state
transformer function

9="

Agents

¥  Agent is a function which maps runs to actions:

An agent makes a decision about what action to
perform based on the history of the system that it
has witnessed to date. Let AG be the set of all
agents

9>"

Systems

¥  A system is a pair containing an agent and an
environment

¥  Any system will have associated with it a set of
possible runs; we denote the set of runs of agent
Ag in environment Env by R(Ag, Env)

¥  (We assume R(Ag, Env) contains only terminated
runs)

9."

Systems

¥  Formally, a sequence

represents a run of an agent Ag in environment
Env =〈E,e0,τ〉 if:

1.  e0 is the initial state of Env

2.  α0 = Ag(e0); and

3.  For u > 0,

:-"

Purely Reactive Agents

¥  Some agents decide what to do without
reference to their history Ñ they base their
decision making entirely on the present, with no
reference at all to the past

¥  We call such agents purely reactive:

¥  A thermostat is a purely reactive agent

:!"

Perception

¥  Now introduce perception system:

Environment

Agent

see action

:,"

Perception

¥  The see function is the agentÕs ability to observe
its environment, whereas the action function
represents the agentÕs decision making process

¥  Output of the see function is a percept:
see : E → Per

which maps environment states to percepts, and
action is now a function

action : Per* → A
which maps sequences of percepts to actions

:9"

Agents with State

¥  We now consider agents that maintain state:

Environment

Agent

see action

next state

::"

Agents with State

¥  These agents have some internal data structure, which is
typically used to record information about the environment
state and history.
Let I be the set of all internal states of the agent.

¥  The perception function see for a state-based agent is
unchanged:

see : E → Per
 The action-selection function action is now defined as a

mapping
action : I → Ac

 from internal states to actions. An additional function next is
introduced, which maps an internal state and percept to an
internal state:

next : I × Per → I

:;"

Agent Control Loop

1.  Agent starts in some initial internal state i0

2.  Observes its environment state e, and
generates a percept see(e)

3.  Internal state of the agent is then updated via
next function, becoming next(i0, see(e))

4.  The action selected by the agent is action(next
(i0, see(e)))

5.  Goto 2

:<"

Tasks for Agents

¥  We build agents in order to carry out tasks for
us

¥  The task must be specified by usÉ

¥  But we want to tell agents what to do without
telling them how to do it

:="

Utility Functions over States

¥  One possibility: associate utilities with
individual states Ñ the task of the agent is
then to bring about states that maximize utility

¥  A task specification is a function
u : E →

which associates a real number with every
environment state

:>"

Utility Functions over States

¥  But what is the value of a run…
Ð  minimum utility of state on run?

Ð  maximum utility of state on run?

Ð  sum of utilities of states on run?
Ð  average?

¥  Disadvantage: difficult to specify a long
term view when assigning utilities to
individual states
(One possibility: a discount for states later
on.)

:."

Utilities over Runs

¥  Another possibility: assigns a utility not to
individual states, but to runs themselves:

u : R →
¥  Such an approach takes an inherently long term

view
¥  Other variations: incorporate probabilities of

different states emerging
¥  Difficulties with utility-based approaches:

Ð  where do the numbers come from?
Ð  we donÕt think in terms of utilities!
Ð  hard to formulate tasks in these terms

;-"

Utility in the Tileworld

¥  Simulated two dimensional grid environment on which
there are agents, tiles, obstacles, and holes

¥  An agent can move in four directions, up, down, left, or
right, and if it is located next to a tile, it can push it

¥  Holes have to be filled up with tiles by the agent. An agent
scores points by filling holes with tiles, with the aim being
to fill as many holes as possible

¥  TILEWORLD changes with the random appearance and
disappearance of holes

¥  Utility function defined as follows:

;!"

The Tileworld, Some Examples

¥  From Goldman and Rosenschein, AAAI-94:

;,"

The Tileworld, Some Examples

¥  From Goldman and Rosenschein, AAAI-94:

;9"

Expected Utility & Optimal Agents

¥  Write P(r | Ag, Env) to denote probability that run
r occurs when agent Ag is placed in environment
Env
Note:

¥  Then optimal agent Agopt in an environment Env
is the one that maximizes expected utility:

;:"

Bounded Optimal Agents

¥  Some agents cannot be implemented on some
computers
(A function Ag : RE → Ac may need more than
available memory to implement)

¥  Write AGm to denote the agents that can be
implemented on machine (computer) m:

¥  We can replace equation (1) with the following,
which defines the bounded optimal agent Agopt:

;;"

Predicate Task Specifications

¥  A special case of assigning utilities to histories is
to assign 0 (false) or 1 (true) to a run

¥  If a run is assigned 1, then the agent succeeds on
that run, otherwise it fails

¥  Call these predicate task specifications
¥  Denote predicate task specification by Ψ.

Thus Ψ : R → {0, 1}.

;<"

Task Environments

¥  A task environment is a pair 〈Env, Ψ〉 where
Env is an environment,

Ψ : R → {0, 1}

 is a predicate over runs.
Let TE be the set of all task environments.

¥  A task environment specifies:
Ð  the properties of the system the agent will inhabit

Ð  the criteria by which an agent will be judged to have either
failed or succeeded

;="

Task Environments

¥  Write RΨ(Ag, Env) to denote set of all runs of the
agent Ag in environment Env that satisfy Ψ:

¥  We then say that an agent Ag succeeds in task
environment 〈Env, Ψ〉 if

;>"

The Probability of Success

¥  Let P(r | Ag, Env) denote probability that run r
occurs if agent Ag is placed in environment Env

¥  Then the probability P(Ψ | Ag, Env) that Ψ is
satisfied by Ag in Env would then simply be:

;."

Achievement & Maintenance Tasks

¥  Two most common types of tasks are
achievement tasks and maintenance tasks:

1.  Achievement tasks are those of the form
Òachieve state of affairs φÓ

2.  Maintenance tasks are those of the form
Òmaintain state of affairs ψÓ

<-"

Achievement & Maintenance Tasks

¥  An achievement task is specified by a set G of
ÒgoodÓ or ÒgoalÓ states: G ⊆ E
The agent succeeds if it is guaranteed to bring
about at least one of these states (we do not care
which one Ñ they are all considered equally good).

¥  A maintenance goal is specified by a set B of ÒbadÓ
states: B ⊆ E
The agent succeeds in a particular environment if it
manages to avoid all states in B Ñ if it never
performs actions which result in any state in B
occurring

<!"

Agent Synthesis

¥  Agent synthesis is automatic programming: goal is to
have a program that will take a task environment, and
from this task environment automatically generate an
agent that succeeds in this environment:

(Think of ⊥ as being like null in Java.)

¥  Synthesis algorithm is:
Ð  sound if, whenever it returns an agent, then this agent

succeeds in the task environment that is passed as input

Ð  complete if it is guaranteed to return an agent whenever
there exists an agent that will succeed in the task
environment given as input

<,"

Agent Synthesis

¥  Synthesis algorithm syn is sound if it satisfies the
following condition:

and complete if:

<9"

Multi Agent Systems

¥  Traditional Multiagent Systems

¥  Several agents coordinate their knowledge
and activities by reasoning about the problem
solving process

¥  Distributed Problem Solving
¥  A particular problem is solved by dividing

tasks among a number of generally equivalent
nodes who divide and share knowledge about
the problem

¥  Modern multiagent systems actually cover
both

<:"

Characteristics of Multiagent Systems

¥  Each agent has incomplete information

¥  Control is decentralized

¥  Data is decentralized

¥  Computation is asynchronous

<;"

Diversity of Multiagent Systems

Number

Uniformity

Goals

Architecture

Abilities (sensor & effectors)

Frequency

Persistence

Level

Pattern (flow of control)

Variability

Purpose

Predictability

Accessibility

Dynamics

Diversity

Availability of resources

<<"

Challenging Issues

¥  When and how should agents interact Ð
cooperate and compete Ð to successfully meet
their design objectives?

¥  Two approaches
Ð  Bottom up Ð search for specific agent-level

capabilities that result in sufficient group capabilities

Ð  Top down Ð search for group-level conventions that
appropriately constrain interaction at the agent level

¥  Leads to several interesting issues É

<="

Issues

1.  How to enable agents to decompose their
tasks and goals (and allocate sub-goals and
sub-tasks to other agents) and synthesize
partial results

2.  How to enable agents to communicate, what
languages and protocols to use

3.  How to enable agents to represent and reason
about the actions, plans, and knowledge of
other agents in order to interact with them

<>"

Issues

4.  How to enable agents to represent and reason
about the state of their interactions

5.  How to enable agents to recognize and handle
conflicts between agents

6.  How to engineer practical multiagent systems

<."

Issues

7.  How to effectively balance local computational
versus communication

8.  How to avoid or mitigate harmful (chaotic or
oscillatory) system wide behavior

9.  How to enable agents to negotiate and
contract with each other

10. How to form and dissolve organizational
structures to meet specific goals and
objectives

=-"

Issues

11.  How to formally describe multiagent systems
and the interaction between agents and how to
ensure multiagent systems are correctly
specified

12. How to realize intelligent processes such as
problem solving, planning, decision making,
and learning in a multiagent systems context

=!"

Applications of Multiagent Systems

¥  Electronic commerce

¥  Real-time monitoring and control of networks

¥  Modeling and control of transportation systems

¥  Information handling

¥  Automatic meeting scheduling

=,"

Applications of Multiagent Systems (cont.)

¥  Industrial manufacturing and production

¥  Electronic entertainment

¥  Re-engineering of information flow in large
organizations

¥  Investigation of complex social phenomena such as
evolution of roles, norms, and organizational
structures

=9"

Common Application Characteristics

¥  Inherent Distribution

Ð  Geographically
Ð  Temporally

Ð  Semantics Ð requires different ontologies and
languages

Ð  Functional Ð requires different cognitive capabilities

¥  Inherent Complexity
Ð  Too large to be solved by single, centralized system

=:"

Properties of Multiagent Systems

¥  Speed & Efficiency

¥  Robustness & Reliability

¥  Scalability & Flexibility

¥  Cost

¥  Distributed Development

¥  Reusability

=;"

SUMMARY

=<"

Summary

¥  Agent preceives the environment and acts.

¥  Agent = architecture + program
¥  Ideal agent takes action that maximizes performance at

a given perception.

¥  Actions of an autonomous agent depend on experience.
¥  Mapping of perceptiuon to actions.

¥  Reactive agents act on perceptions, goal-oriented
agents act to reach a goal, utility-based agents maximize
their profit.

¥  Representation of knowledge!

¥  Various environments. Most difficult: not accessible,
episodic, dynamic, and continuous.

=="

Summary

¥  Multiagent systems are systems in which multiple
interacting agents interact to solve problems

¥  Key concepts of multiagent systems are agents and
agent coordination

¥  There are many important issues for multiagent
systems that attempt to answer when and how to
interact with whom

=>"

Summary

¥  Common characteristics of multiagent systems are
their inherent distribution and complexity

¥  Distributed and flexible nature of multiagent systems
leads to increased speed, robustness, scalability
and reusability

=."

References

¥  G. Gšrz et al., Handbuch der kŸnstlichen Intelligenz, Oldenbourg, 2003.
Kapitel 24: Software Agenten.

¥  Wooldridge, M. & Jennings, M; ãIntelligent Agents:
Theory and PracticeÒ; The Knowledge Engineering
Review 10

¥  Nwana, H.; ãSoftware Agents: An OverviewÒ; The
Knowledge Engineering Review, Vol. 11 No 3

¥  Bradshaw, J.; ãAn Introduction to Software AgentsÒ;
 AAAI Press/The MIT Press

¥  Rao A. & Geogreff M.; ãBDI Agents: From Theory
 to PracticeÒ; Tech. Rep. 56, Australian Artificial
 Intelligence Institue, Melbourne, Australia, Apr 1995

>-"

Next Lecture

Title
1 Introduction

2 Propositional Logic

3 Predicate Logic

4 Theorem Proving, Description Logics and Logic Programming

5 Search Methods

6 CommonKADS

7 Problem Solving Methods

8 Planning

9 Agents

10 Rule Learning

11 Inductive Logic Programming

12 Formal Concept Analysis

13 Neural Networks

14 Semantic Web and Exam Preparation

>!"81

Questions?

