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ABSTRACT
This paper highlights how the domain of Smart Cities is of-
ten modeled by ontologies to create applications and services
that are highly flexible, (re)configurable, and inter-operable.
However, ontology repositories and their accompanying rea-
soning and rule languages face the disadvantage of bad run-
time behavior, especially if the models grow large in size. We
propose an architecture that uses tools and methods from
the domain of Big Data processing in conjunction with an
ontology repository and a rule engine to overcome potential
performance bottlenecks that will occur in this scenario.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Applications;
H.2.4 [Systems]: Rule-based databases

General Terms
Design, Experimentation, Performance

Keywords
Energy Efficiency, Smart City, Ontology, Semantic Model-
ing, Real-time Streaming, Big Data

1. INTRODUCTION
As a response to the urgent call to lower emissions of car-

bon dioxide, the Smart Grid concept, closely tied to the con-
cept of Smart Building/Home and eventually Smart City, all
aimed at improving energy efficiency, has emerged.

A wide array of commercial product solutions, support-
ing the adoption of Smart Grid technology among energy
providers [10] as well as Smart Building technology among
building constructors and managers are already available
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on the market [11]. Although these products are a sound
starting point to achieve energy savings, the vision of a
Smart City reaches much farther, including broader resource
integration, increased ease of deployment and operation,
automation, policy sharing, etc. Moreover, the commer-
cially available Smart Building Analytics Technologies are
known to be cumbersome to setup and reconfigure, mak-
ing them less likely to get adopted [15]. The main prior-
ity in further development1 is to improve the user experi-
ence. A wide area of research has formed around the Smart
Grid/Building/Home concept, for readability purposes, fur-
ther generalized and referred to as Smart City. The appli-
cation of semantics is one such initiative.

Making use of semantic modeling to describe resources in
various domains has been explored in numerous projects fo-
cusing among other topics also on Smart Cities [7, 16, 5].
The widespread adoption of semantic technologies in the
Smart City domain stems from the fact that it enables flex-
ibility in system configuration and adaptation. Addition-
ally, it can provide intelligence via reasoning over the sys-
tem. This concept allows for interoperability of diverse dis-
tributed system components, such as sensor devices, smart
meters, smart plugs, etc.. It can also provide the basis for
higher-level interoperability such as rule translation and pol-
icy sharing [5]. As a result, an ontology-based semantic
model has become prevalent in the area of context aware and
Smart City technologies [1, 12, 14]. Nonetheless, semantic
processing is not capable of managing such vast amounts of
data, as are expected in the Smart City scenario, in realtime
[1, 2, 3, 8]. Furthermore, in [10], the call for application of
Big Data technology in Smart Grid analytics is emphasized
and, as suggested in [11], cloud delivery of energy manage-
ment solutions is largely becoming an accepted approach.

We plan to contribute to this research by proposing a novel
system architecture for Smart City applications which em-
ploys ontology reasoning and distributed stream processing
framework on the cloud. With our approach, the decision
making process is fully automatic and self-contained and, at
the same time, the system remains robust and time efficient
even in a large scale domain.

The remainder of this paper is organized as follows: in sec-
tion 2, we summarize current research related to the topics
of ontology-based Smart City and processing of Big Data.

1IMS Research - http://www.imsresearch.com/
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Section 3 describes our proposed architecture and gives re-
quirements for a real-world implementation. The prototype
we have built to prove the concept is shown in section 4
and the future work and concluding remarks can be found
in sections 5 and 6, respectively.

2. RELATED WORK
This work relates to other fields of research mainly in two

areas (1) an ontology-based reasoning in the Smart City do-
main and (2) the processing of Big Data. In this section we
briefly introduce the concepts behind Smart City and cover
related research. At the end, the novelty of our architecture
approach is explained.

2.1 Smart City
In the conventional power distribution systems, the cus-

tomer (e.g. household) is viewed as a passive consumer of
energy. With the Smart City paradigm, however, comes a
different scenario, in which power plants need to intercon-
nect with customers (acting as prosumers) and with other
distributed renewable energy sources. The challenge in co-
ordinating this communication and fostering energy savings
and reuse calls for ICT2 technologies to be applied.

Much research, concerning interactions of Smart Houses
and Smart Grids, has already been conducted and many re-
lated projects have emerged. The report in [4] presents a
summary of projects from around the world. In many cases,
the work is also carried out by the industry. These initia-
tives promise to shed more light on the challenges of inte-
grating heterogeneous participants and the ability to handle
the large amounts of data needed to be reasoned over. How-
ever, the progress is rather slow, largely due to privacy and
security issues and the power grid’s high reliability needs.
Given the fact that at this point there is little available to
capitalize on in terms of the actual home-grid data inter-
change, we would like to contribute to the advance in the
research by proposing a solution that we claim is general
enough to support the energy coordination in a Smart City.
More specifically, we claim our solution to be: (1) adaptable
to a wider range of concepts from additional domains (such
as infrastructure, weather, etc. [16]) and (2) applicable to
the coordination of the new power grids (often micro grids)
and their distributed nature (so far in the research most suc-
cessfully implemented with the multi-agent system (MAS)
technology [7]). This leads us to two major requirements
for our design: (1) follow the direction of previous research
and base our design on semantics in order to allow for seam-
less communication between diverse systems and (2) satisfy
a sufficient realtime response of such a complex system by
applying Big Data technology. The next two paragraphs
address the research related to these two requirements.

2.2 Ontology
Within the realm of computer science, ontologies are for-

mal representations of concepts within a specific domain.
Such models describe the relationships between pairs of these
concepts, providing a common vocabulary for the given do-
main, and consequently, eliciting knowledge sharing. On-
tologies can also include reasoning rules allowing process-
ing of knowledge and deriving new information via inference
[13].

2Information and Communications Technology

The use of semantics in the Smart City problem domain
has been researched in numerous works. For example, in [9],
the work focuses on semantic-based architecture communi-
cation by applying standards of ICT. The author identified
standards and specifications necessary for seamless data ex-
change among Smart Grid devices and systems and proposed
a solution which relies on annotating semantic meta data to
services in order to allow server and clients to share infor-
mation.

Penya et al. [7] apply semantic tools in their distributed
architecture approach within the ENERGOS project, and
propose that a unique global ontology, based on the stan-
dards from CIM3, should be sufficient to represent the Smart
Grid domain as a whole.

In [16], the authors integrate a Smart Grid information
model and apply it to a demand response (DR) optimiza-
tion application using complex event processing (CEP). A
number of ontologies (electrical equipment, organization, in-
frastructure, weather, and spacial and temporal ontologies)
are integrated to represent a complete Smart Grid and the
relationships among them have also been defined.

In our previous work ([5]), on which we base our current
research, a semantically enabled Smart Building system was
implemented, combining home automation techniques and
data from smart meters, smart plugs, and sensors. Complex
rules and policies were created to monitor and administer
the centrally stored data that was updated in near realtime.
The system was deployed in two real-life buildings (a school
and a factory floor) and data were collected over a period of
several months resulting in almost 10 million triples.

In summary, the use of ontologies has proven to be in-
evitable for Smart Building/Grid applications. However,
some authors consider the use of ontologies in context aware
environments to be very sensitive to the size of the dataset
and unreasonable to use for time-critical applications [8].
Similarly, in [3], the authors have reported a limitation in se-
mantic processing, where the reasoner and rule engine would
not be able to perform in realtime when applied to the full
semantics model. We too are skeptical about the perfor-
mance in scenarios of Smart City where the context data
are of large size, constantly changing, and often incomplete.
We turn to Big Data to remedy these issues.

2.3 Streaming Big Data
According to [10], the amount of sensors in Smart Grids,

combined with those in Smart Homes/Buildings, will vastly
increase the data influx in the near future. Moreover, the
coordination of energy in Smart Cities is highly time critical
and dependent on reliable data [14]. This leads us to a
situation in which the stream processing tools from Big Data
technology are needed to ensure efficient processing of the
generated data [6].

Realtime streaming platforms are tools in Big Data that
are able to handle large volumes of data, arriving to the
system at high velocities, by using compute clusters to bal-
ance the workload. Those systems inherit some properties
of MPI4 clusters but add scalability to the feature set. They
are able to rebalance the workload if too many messages need
to be processed in a certain compute node. There are three
systems that can be considered mature enough for produc-

3Common Information Model
4Message Passing Interface



tive environments: Project Storm5 (developed at Twitter),
S46 (developed at Yahoo), and Project Spark7. All these sys-
tems have in common the ability to reliably process events
or messages on a distributed compute clusters. For all mes-
sages entering the system, they guarantee processing even if
some of the compute nodes in the cluster fail. Finally, all
systems can be dynamically reconfigured, making it possible
to adjust the size of the cluster during runtime.

Our work stands apart from the presented related work
in the combination of ontology-based reasoning with Big
Data streaming methodology. We approach the integra-
tion of these two technologies by off-loading the basic data
processing tasks (data cleansing, broken sensor detection,
normalizing, threshold alerts, etc.) to the compute cluster
and work with a reduced dataset (in terms of volume and
throughput) in the ontology repository. As a result, we read
from and, most importantly, write to the ontology only when
necessary.

3. PROPOSED ARCHITECTURE
Based on what we found in literature [10, 11, 2, 8] and

our initial proof-of-concept performance testing on ontology
repositories, we have concluded that moving Smart City ap-
plications (which heavily make use of ontologies and rule-
based reasoning) to the cloud and integrating it with a real-
time computation platform is desirable. On this account, we
suggest an architecture, featuring components for realtime
processing and reasoning.

In the following, we discuss the proposed architecture as
shown in figure 1. The main components: streaming plat-
form, ontology repository, rule engine, and possible client
applications are displayed. The figure also shows the gen-
eral flow of information in the system.

Sensor data originating from any sensor found in a Smart
City (e.g. smart meters, smart sensors, etc.) are sent to
a realtime streaming platform. This platform is assembled
into a cluster from many individual compute nodes. Due
to the inherent feature of stream processing engines8, each
of these nodes is handling streams of sensor data from ar-
bitrarily many sensors, depending on the amount of data
the individual sensors are generating. The streaming plat-
form component is responsible for detecting any considerable
changes in sensor data readings or failures in sensors, and
for accumulating sensor readings where applicable. Further,
data cleansing processes (handling of outliers, temporary
sensor outages, normalization, calibration, etc.) are applied
within the compute cluster to free underlying components
from these tasks. Each node in the cluster can directly ac-
cess the ontology repository to be able to make changes to
it.

The ontology repository records the most recent readings
and accumulated information such as the average tempera-
ture of the last hour or the average power consumption of
the last week, etc. Any changes in the ontology are trigger-
ing the rule engine to re-evaluate rules and take actions, if
applicable.

Within the rule engine, a set of rules are stored and exe-

5http://storm-project.net
6http://incubator.apache.org/s4/
7http://spark-project.org
8Working on streams of messages/events, they are able to
balance these streams between compute nodes in the cluster.
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Figure 1: High-level overview of the Smart City data
processing architecture

cuted on a timely basis upon user request and whenever the
compute cluster is signalling a change event. The rule en-
gine has several means for output of rule execution results.
1) The engine can raise alerts. These are stored in the ontol-
ogy repository for later querying9 and can be sent to clients
that have registered to receive alerts of a certain category.
Further, alerts are used to adapt the preprocessing that is
performed in the compute cluster (update sensor readings
more frequently, stop reading certain sensors, etc.). 2) The
outcome of rule execution can also just be an adaption of
the preprocessing process (dependency between sensors has
changed, sensor needs to be read less frequently, error cor-
rection needs to be adapted, etc.) in order to adapt to new
situations. 3) Last but not least, the rule execution results
can just be sent back to clients, especially if rule execution
was initiated by a client application.

Finally, client applications are able to register to receive
results of rules stored in the rule engine (alerts, events, etc.),
send queries to the rule engine for one time execution, and
store new rules in the rule engine for regular or event driven
execution.

4. PROTOTYPE
Although S4 would provide the advantage of integrating

9Especially useful when clients are polling the repository for
alerts, which is the case in our earlier work. These legacy
clients therefore remain compatible.
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of OpenNebula

with Spring configuration10 and Spark would already pro-
vide tight integration with other Big Data tools such as
Hadoop and Hive, we have chosen to use Storm as the ba-
sis for the prototype implementation. The deciding factor
for our choice was the availability of a simple administrative
interface for monitoring the cluster and the possibility to
specify upper bounds for parallelism. This, in our case, can
be used to vary the cluster size for running experiments.

As already explained to some extend in the previous sec-
tion, Storm is a distributed and fault-tolerant realtime com-
putational platform. It knows two basic processing primi-
tives: Spouts and Bolts. Spouts are used to stream data to
the system. They connect to the data sources, in our case
to Redis11-backed sorted sets of sensor readings and pass
this data encapsulated in so called Tuples to the processing
units (Bolts). These Bolts are able to consume and emit
streams of Tuples. They build the main building blocks of a
Storm system. It is in these Bolts where our preprocessing
takes place. Spouts and Bolts are tied together in a so called
Topology that describes the flow of messages within Storm.
It allows to specify groupings, and the number of concurrent
instances for a certain Bolt or Spout can be bounded in the
Topology.

The ontology repository, describing a representational sub-
group of facets typical for a Smart City model, is mostly
reused from the previous work of [5], where ontologies of
Smart Buildings and the connector software talking to the
hardware (sensors, smart meters, smart plugs, etc.) were
already put to test. However, for our prove of concept in
this work, we implement our ontology as a set of simple Java
classes as is required by our rule engine. The repository does
not store extensive data (sensor readings, timings, etc.) as
was the case in [5]. Instead, only the most recent readings
and accumulated information are being recorded, effectively
reducing the work complexity done by the reasoning engine.

As our reasoning engine in the prototype, we are using the
Drools Fusion module of Drools from JBoss12. Drools is an
object-oriented business rule management system (BRMS)
with a forward chaining inference based rules engine, i.e.
a production rule system. Drools uses an enhanced imple-
mentation of the Rete algorithm and is very flexible when it
comes to adapting to any problem domain. Drools Fusion is
the Drools module for enabling complex event processing ca-
pabilities, offering features such as temporal reasoning and
reasoning over an absence of events13. We have chosen this
rule engine thanks to it being rated as one of the fastest and
most flexible open source rule engine available as of now,
which allowed us to rapidly build our test scenarios.

All of our components are running inside of virtual ma-

10http://www.springsource.org
11http://redis.io
12www.jboss.org/drools/
13http://www.jboss.org/drools/drools-fusion.html

chine containers on top of an OpenNebula14 cloud installa-
tion set up at one of our cloud computing labs. This cloud
is featuring 24 CPU cores 72 GB of RAM which allows us
to deploy test installations and to conduct experiments with
varying cluster sizes. All virtual machines are connected to
a 1GBit switch in bridged networking mode which sets the
upper bound of our internal bandwidth limit. A diagram
illustrating the setup is shown in figure 2.

Being fault-tolerant and scalable, Storm guarantees that
each emitted Tuple is processed by the correct order of Bolts
and the cluster adapts to the addition and removal of com-
pute nodes dynamically. Thanks to these properties, it is
possible to seamlessly grow the system further (from just
handling data for a number of buildings up to the size of
whole cities) without drastically affecting the performance
of the system.

4.1 Evaluation
As a smaller scale real-life experiment, we have streamed

an inflated version of previously collected data ([5]) at high
velocity to our cluster, in order to simulate the activities in
a virtual Smart City.

The simulation to test our prototype is driven by a con-
figurable Smart City model created anew for each test run.
This simple model takes care of generating energy consum-
ing entities (for the prototype testing so far, it generates
buildings with sensors and appliances in their rooms). This
model can be readily extended to include additional sensor
data or other entities that play a role in a Smart City, once
their data are available to us. From our previous work, we
have temperature, humidity, and lighting data for a num-
ber of rooms as well as information from which presence can
be deduced. The sensor data arriving at the Spouts are ei-
ther directly forwarded (going through a no-action Bolt) to
update the ontology and reevaluate rules or they are pre-
processed in a number of Bolts. In the later case, the ontol-
ogy is updated only selectively, causing the rules not to be
evaluated as often. Every ontology update triggers the rule
engine, which is making simple decisions for every building.
For example, it evaluates a given rule to be true for a given
building if temperature reaches a certain threshold. It also
checks for presence (whenever presence is needed in the de-
cision making process) and then triggers actions accordingly
(such as turning on/off a given heating appliance or raising
an alert).

We have been able to observe that for scenarios in which
a small number of buildings are handled the rule engine per-
forms satisfyingly even without the application of any prior
filtering but has significant improvement when preprocess-
ing is employed. As we have moved to larger setups, the
performance was gradually deteriorating when no filtering
was used whereas with the streaming platform filtering it
was still satisfying.

Additionally, one has to take into account the fact that in
a real-life application the rules are likely to be much more
complex as well as more numerous making the case for the
use of preprocessing within a streaming platform even more
sound. We also believe that our simulation proves the point
even though the data used are not directly related to the
data that would need to be processed in a real-life Smart
City system. We claim this relevant since in both cases the
streaming data are essentially timestamp-value Tuples.

14http://www.opennebula.org
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5. FUTURE WORK
The prototype shows that our approach is both feasible

for the problem scope and scalable to larger problem sizes.
Still, there are issues that need to be addressed to make this
architecture applicable in real-world scenarios.

One such matter is the lack of any security restrictions in
both our architecture and implementation. This was omit-
ted on purpose due to time constraints. However, since high
standards in security and privacy are by all means indispens-
able [14], we plan to integrate security and privacy mecha-
nisms in updated versions of this architecture.

Our project is still in an early stage and thus, we are
lacking performance evaluation in large scale setups. The
problem we face is that there are no complete datasets pub-
licly available in the Smart City category that possess Big
Data properties. As a future improvement to our system, we
plan to extend our city model to simulate more complex rea-
soning scenarios by including additional datasets to reason
over, such as weather and traffic data.

In continuation, we are also planning to devote substantial
attention to improving the streaming platform component
where more advanced filtering, failure detection, and data
cleansing needs to take place.

6. CONCLUSION
In this paper, we have proposed and presented an architec-

ture for efficient processing of sensor data from Smart City
installations. We concluded that in such larger scale sce-
narios, the influx of data, needed to be processed in order
to optimize energy usage, requires smart reasoning mech-
anisms, such as ontologies, to live up to its full potential.
Since the current ontology-based knowledge databases would
cause performance bottlenecks in large scale installations,
we have addressed this matter by combining ontology-based
reasoning with Big Data processing. Namely, our architec-
ture uses Big Data streaming clusters for basic processing
needs, while the time consuming ontology driven reasoning
is applied only when necessary.
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