
Classi�cation of E-mail Queries by Topic:

Approach Based on Hierarchically Structured

Subject Domain

Anna V. Zhdanova1;2 and Denis V. Shishkin1;2

1 Novosibirsk State University, Novosibirsk 630090, Russia
2 A.P. Ershov Institute of Informatics Systems, Novosibirsk 630090, Russia

fanna, denisg@sib3.ru

Abstract. We describe a Classi�er of e-mail queries, which executes

text categorization by topic. The speci�cs of our Classi�er is that it

allows accurate categorization of short messages containing only a few

words. This advantage is achieved by executing morphological and se-

mantic analyses of an incoming text. Speci�cally, the Classi�er provides

an eÆcient information extraction and takes the meaning of words into

consideration. By using the hierarchically structured subject domain and

classi�cation rules, the Classi�er's engine assigns an e-mail query to the

most relevant category or categories.

1 Introduction

The need for implementation of automatic classi�cation or categorization of elec-
tronic documents is acute nowadays, due to the increasing ow of data in the
World Wide Web and enlarging electronic databases. In particular, classi�ca-
tion of electronic queries and information extraction are the key steps towards
creating an automatic e-mail answering system. To handle the problem of text
categorization, many methods have been proposed. Among these methods are
the Naive Bayes technique [1], maximum entropy modeling [2], k-nearest neigh-
bor classi�cation [5], document clustering [3], rule-based method [4], and topic
identi�cation via using a hierarchical structure of the subject domain [5]. How-
ever, the precision of classi�cation performed by using these approaches is often
insuÆcient for constructing automatic answering systems, because the semantics
of words in classi�ed documents is not taken into consideration. Incorporating
the word semantics into the classi�cation process by using the external linguis-
tics knowledge-base (WordNet) results in improving the classi�cation precision
[5]. The latter approach does however not take into account the word order and
special words such as negation words (e.g., the texts consisting of expressions
"to be" and "not to be" are assigned to the same category).

In this paper, we describe a Classi�er, which makes it possible to categorize e-
mail queries of di�erent sizes including those containing only a few words, where
identifying the semantics is especially important (questions, addressed to call-
centers, are examples of such queries). The software presented contains an infor-
mation extraction tool with included morphological analysis of words, rule-based

engine for assigning an e-mail query to the appropriate category/categories, and
a database of hierarchically structured domains with the corresponding dictio-
naries. A hierarchical domain structure is used by the rule-based engine in order
to take into account the semantics of an incoming e-mail query. The seman-
tic analysis implemented in our Classi�er is more complete compared to those
employed earlier. Combination of these features results in improvement of the
precision of classi�cation.

2 Hierarchical Domain Structure

In our approach, the subject domain is represented as a hierarchy (i.e., a tree)
of categories, because such domain representation makes it possible to take into
consideration the semantics of the words from a query. A hierarchy is built ac-
cording to the properties of objects belonging to categories. Each category is a
generalization of its subcategories, while a subcategory has an "is a" or "part
of" relationship with the category it belongs to. Speci�cally, each category is
represented by its mnemonic name, relationships with other categories, and a
set of regular expressions. The set of regular expressions attributed to a cate-
gory should guarantee covering the semantics of all possible queries, which are
to be assigned to this category. If a regular expression characterizes all the sub-
categories, it is replaced to a more general category. Obviously, a set of regular
expressions can not be empty.

In the framework of our Classi�er, a tree of categories is constructed manually
by the experts who are familiar with the corresponding domain. To implement
classi�cation, we have constructed category trees for two relatively narrow do-
mains: insurance and banking. We have used English and Russian languages. A
part of the hierarchically structured insurance domain is shown in Fig. 1 (the
left sub-window).

3 Regular Expressions and Classi�er's Dictionary

Information extraction is often based on a dictionary of keywords. Information
extraction using a dictionary of regular expressions is however more eÆcient,
because it takes into consideration the morphology and semantics of the words
from an e-mail query. Regular expressions include keywords and collocations.
In addition, the Classi�er's dictionary constructor allows representing a regular
expression as a stem of a keyword or collocation and attributed numbers, which
correspond to the lengths of the possible endings of this word or collocation.
In our Classi�er, using regular expressions guarantees extraction of all the rele-
vant words independently of their morphological form and extraction of all the
text components, which can be represented as a regular expression (e.g., any
e-mail address). The "stem + ending length" approach is especially helpful for
inexional languages (e.g., Russian), because in this way a more complex and
unnecessary here morphological analysis is avoided. For English, this approach
is also useful, because it allows to di�erentiate relevant and irrelevant words.

For example, creating a regular expression with the meaning of an accident (i.e.,
crash and/or breakage) and stating that a stem "accident" has a zero or one
letter length of ending, we achieve that the words "accident" or "accidents" are
matched to this regular expression, but the word "accidental" is not. In addi-
tion, the "stem + ending length" approach is more competent in handling the
problem of misprints and incorrectly written words in an e-mail query.

The Classi�er's dictionary is a list of regular expressions, which corresponds
to the chosen domain. Each regular expression has one or several pointers at
the related category or categories from the tree. The functional expressions,
such as the expressions for negation (e.g., "no", "isn't", "besides"), are marked
by special labels. This dictionary structure is independent of a language. To
make the Classi�er multilingual, it is necessary to add the appropriate regular
expressions in di�erent languages to the dictionary.

Fig. 1. Snapshot of the Classi�er's user interface

4 Classi�cation Rules

After the process of information extraction is completed, we generate a list of
pointers at categories (i.e., a set of tree node numbers) and negations in the

order of location of the corresponding words (regular expressions or negation
expressions). The classifying rules, used to assign a query to the most relevant
category/categories associated with the list, are as follows.

Intersection : If a category and its subcategory at any level of the tree are
found in the list together, the category, as being more general, is removed from
the further processing in order to attain a precise classi�cation.

Negation : The category or categories assigned to the regular expression,
which follows a negation expression, are substituted by their nearest-neighbor
categories at the same level of a tree.

Union : The categories, which have not been removed, are united in a new
list. An e-mail query is assigned to the category or categories of this list, if none
of the rules can be executed anymore.

Formally, the rules above can be executed by applying the following opera-
tions to the sets of tree nodes (i.e., categories): A \ B = fx : [(x 2 A)&(9b 2
B : x � b)] _ [(x 2 B)&(9a 2 A : x � a)]g, :A = fx : (x =2 A)&(9a 2 A :
isBrother(x; a))g, A [B = fx : [(x 2 A) _ (x 2 B)]g.

Here, A and B are the sets of tree nodes; a, b, and x are the tree nodes; x � y

is the predicate, which equals "true" when x is a descendant of node y, and
equals "false" otherwise; isBrother(x; y) is the predicate, which equals "true"
when x and y are the sub-nodes of the same node, and equals "false" otherwise.

5 Implementation of the Classifying Rules

As a reader might have seen in the previous section, we operate with the partially
ordered set < T;�> and the algebra
 =< A;[;\;: >, where A = fB : (B �

T)&(8a 2 T ([9b 2 B : a � b]) a 2 B))g. The operations [;\ are union and
intersection of sets. The operation of negation :j = fx : (x =2 j)&(9a 2 j; 9y 2
T : isBrother(y; a)&x � y)g, where j 2 A and isBrother(a; b) = 9c 2 T : (a �
c)&(b � c)&(:9d 2 T : (a < d < c) _ (b < d < c)), where a; b 2 T .

The de�nition of algebra
 uses the existence quanti�ers '9'. For this rea-
son, a straightforward implementation of the operations de�ned above implies
searching through a set of nodes every time a rule is executed, which is time
consuming. To avoid this problem, we introduce a new algebra 	 =< A4 =
f< a; b; c; d >: a; b; c; d 2 Ag;[;\;: > and de�ne its operations (intersection,
negation and union) in the following way:

< a1; b1; c1; d1 > \ < a2; b2; c2; d2 >=< (a1\a2)[(a1\b2)[(b1\a2); (b1\
b2); (c1\ c2)[(c1\ (b1[b2))[(c2\ (b1[b2)); (d1\ d2)[(d1\ (b1[b2))[(d2\
(b1 [b2)) >, : < a; b; c; d >=< c; d; a; b >,

< a1; b1; c1; d1 > [< a2; b2; c2; d2 >=< a1 [a2; b1 [b2; c1 [c2; d1 [d2 >.
Then, we de�ne a mapping � : A! A4. Let J 2 A, then �(J) =< a1; a2; a3; a4 >,
where a1 = fx : 9a 2 J; a � xg, a2 = fx : 9a 2 J; x � ag = J ,

a3 = fx : 9a 2 J; 9b 2 T : (b =2 J)&isBrother(a; b)&(b � x)g,
a4 = fx : 9a 2 J; 9b 2 T : (b =2 J)&isBrother(a; b)&(x � b)g.
According to the construction above, � is an isomorphism. This enables us to

deal with the algebra 	 instead of the algebra
. One can see that the negation

operation in the vector space 	 is global, while the operation of the space
 is
local. In the algebra 	 , we use the four-dimensional space in order to store the
"brothers" (for the operation of negation), "descendants", and "ancestors" (to
�nd the tree nodes corresponding to an element of the algebra 	 quickly). In the
case of the negation operation, the algebra 	 construction provides a constant
execution time of ':' operation (by using the bit set model). Hence, the model
	 is more e�ective then the model
.

6 Used Tools

The Classi�er's implementation has required construction of a few tools including
TreeBuilder, LinguaEngine, and RegExParser. In principle, these tools can be
used in solving natural language problems di�erent from classi�cation. Java is
employed as a programming language.

The main goal of the program TreeBuilder is helping a user to create a tree
(a hierarchy of categories in Classi�er). The tree nodes and their sub-nodes can
be easily created and associated with runnable Java objects or hard disk data
(e.g., �les). In addition, the TreeBuilder's graphics user interface allows one to
edit the source code of rules and dictionaries, create tests, store the hierarchy and
its data (the tree is stored in the XML format), and view the debug information.
Copy&paste technology can be applied to any hierarchy part that can be edited.
A node can be extended on another tree by linking the XML �le of a tree to
the node. A tree, containing such nodes, may function as a "library" for a user.
Thus, the TreeBuilder's features facilitate the process of tree construction.

LinguaEngine is the rule-based engine, used by the Classi�er. LinguaEngine
takes a list of Java objects (a list of pointers at categories in our case) and rules
as an input. The output is the objects left in the input list, when all of the rules
have �nished their execution. Technically, a rule is presented as a Java method.
In the process of execution, a rule replaces a sub-list of objects with another list
of objects.

In this paper, we have described only three classi�cation rules. However,
the rules might be more numerous after introducing less general rules for more
particular cases. The engine makes it possible to unite the rules into groups and
to introduce a "group-order". "Group-order" de�nes the group, containing the
rules to be executed earlier than the rules from the other groups. For example,
sometimes it is necessary to execute more important rules before the rules of less
importance. A group of rules is implemented by the means of a Java class, where
every boolean method represents a rule. If a rule is executed, the corresponding
method returns "true" (i.e., the engine tries to execute the �rst rule of this
group), else the method returns "false" (i.e., the engine tries to execute the next
rule of the same group). When none of the rules from the current group can be
executed, the engine switches to the rules of the next group according to the
"group-order".

RegExParser is the tool for morphological analysis and information extrac-
tion, as described in Sec. 3.

7 Future Work

Performing its main task of text categorization, our Classi�er extracts infor-
mation, which can be used for creating an automatic e-mail answering system.
Such a system, for example, may rely on information extraction performed by
the Classi�er and a template-based natural language generation [6]. Presently, if
a query is classi�ed into any category, the Classi�er displays a natural language
reply proposed by the creators of domain's hierarchical structure. Generation of
replies in natural language may result in a higher interactivity with a user and
provide an adequate amount of information for di�erent kinds of users [7].

We believe that the performance of an automatic e-mail answering system
may also be improved by identifying the genre of an incoming query. After
deciding whether the e-mail document is a question, demand, or compliant,
the system should act correspondingly. This strategy can be implemented by
introducing a multi-dimensional hierarchy of the subject domain.

Finally, it is appropriate to notice that the presently used manual construc-
tion of category trees is a time-consuming process that requires special knowl-
edge. For this reason, automation of this step is also desirable.

Acknowledgements The authors thank F. Dinenberg and I. Kononenko
for constructing the hierarchies of categories and useful discussions, and D. Levin
and D. Petunin for useful discussions.

References

1. �Zi�zka, J., Bourek, A., Frey, L.: TEA: A Text Analysis Tool for the Intelligent Text

Document Filtering. In: Proceedings of the 3-rd International Workshop on Text,

Speech and Dialogue (2000).
2. Manning, C.D., Schutze, H.: Foundations of Statistical Natural Language Process-

ing. The MIT Press (2001).
3. Makagonov, P., Sboychakov, K.: Software for Creating Domain-Oriented Dictio-

naries and Document Clustering in Full-Text Databases. In: Proceedings of the

Second International Conference on Intelligent Text Processing and Computational

Linguistics (2001).
4. Cohen, W.W.: Fast E�ective Rule Induction. In: Proceedings of the Second Inter-

national Conference on Machine Learning (1995).
5. Tiun, S., Abdullah, R., Kong, T.E.: Automatic Topic Identi�cation Using Ontology

Hierarchy. In: Proceedings of the Second International Conference on Intelligent

Text Processing and Computational Linguistics (2001).
6. Kosseim, L., Beauregard, S., Lapalme, G.: Using Information Extraction and Nat-

ural Language Generation to Answer E-mail. In: Proceedings of the 5-th Interna-

tional Conference on Applications of Natural Language to Information Systems

(2000).
7. Bergholtz, M., Johannesson, P.: Validating Conceptual Models - Utilizing Analysis

Patterns as an Instrument for Explanation Generation. In: Proceedings of the 5-

th International Conference on Applications of Natural Language to Information

Systems (2000).

